

gcpat.com

John Dalton Technical Service Manager 2325 Lakeview Pkwy,
Ste 450, Alpharetta, GA,
30009 USA

30009 USA

30009 USA

John Dalton
Technical Service Management of the first of John.a.dalton@gcpat.com

LEED RELATED DOCUMENTS

MONOKOTE® Z-106/HY

LEED Letter	Page 2
Environmental Product Declaration	Page 4
Declare Label	Page 19
Volatile Organic Compounds (VOCs) Content Report	Page 21
Volatile Organic Compounds (VOCs) Emissions Report	Page 23

2325 Lakeview Pkwy, Ste 450, Alpharetta, GA, 30009 USA

gcpat.com

John Dalton Technical Service Manager +1 617 498 4935 Office +1 781 258 6463 Mobile John.a.dalton@gcpat.com

March 10, 2020

RE: Monokote® Fireproofing Materials and sustainability.

GCP Applied Technologies is proud to participate in a number of sustainability programs that can help you design and construct a more sustainable building.

Contribution to LEED

Monokote® Fireproofing materials are shipped in recyclable packaging and contain recycled content. We also have publicly available transparency reports to provide insight into our products. Choosing Monokote® Fireproofing can potentially help projects achieve the following LEED® 2009 and LEED® v4 credits under the Building Design + Construction and Interior Design + Construction rating systems:

LEED® 2009		
Construction Waste Management	Regional Materials	
Recycled Content	Acoustic Environment (Healthcare)	
Low-Emitting Materials—Paints and Coatings	Enhanced Acoustical Performance (Schools)	
LEE	D® v4	
Building Product Disclosure and Optimization—	Building Product Disclosure and Optimization—	
Material Ingredients	Environmental Product Declarations	
Low Emitting Materials	Acoustic Performance	
Building Product Disclosure and Optimization—	Construction and Demolition Waste	
Sourcing of Raw Materials	Management	

Environmental Product Declaration:

All Monokote® Fireproofing materials have a Type III environmental product declaration prepared in accordance with ISO 14025, ISO 21930, ISO 14040/44, ASTM Product Category Rule (PCR) for Spray-applied Fire-Resistive Materials (SFRM) and ASTM General Program Instructions for Type III EPDs.

Regional Materials: Depending on your project location, you may also be eligible to claim a 100-mile regional sourcing multiplier for LEED® V4. Monokote® Fireproofing materials are produced in the following cities in North America:

Ajax, Ontario, Canada Irondale, Alabama

Santa Ana, California Andover, Massachusetts (Firebond Concentrate only)

Contribution to the Living Building Challenge

GCP Applied Technologies has developed Declare **RED LIST FREE** labels for several Monokote® Fireproofing products, all of which are available on the Declare website.

VOC – Content and Emissions; The majority of Monokote® Fireproofing products have been tested per the CDPH - **CA Section 01350** Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources using Environmental Chambers Version 1.2.

The **VOC** Content of our Monokote® Fireproofing products are as follows:

Monokote® Product Volatile Organic Compounds (VOC) reported per the Emission Standards

Monokote® Fireproofing 0 g/L
Firebond® Concentrate 0.60 g/L

The **recycled contents of** Monokote® Fireproofing are shown below:

	% Weight	% Weight
<u>Monokote</u>	Post-Consumer	Post- Industrial
MK-6/HY	7.13	0.00
MK-6s	5.13	0.00
MK-6 ES	5.13	0.00
MK-6/GF	7.05	0.00
RG	8.27	0.00
MK-10/HB	6.99	0.00
MK-10/HB ES	5.01	0.00
MK-1000/HB	5.10	0.00
MK-1000/HB ES	5.09	0.00
Z-106s	1.44	0.00
Z-106/HY	5.05	0.00
Z-106G	5.13	0.00
Z-146	1.93	0.00
Z-3306	4.51	0.00
SK-III	0.00	0.00
Z-146PC	1.91	0.00
Z-146T	1.91	0.00
Z-156	1.25	0.00
Z-156PC	1.23	0.00
Z-156T	1.23	0.00
Firebond Concentrate	0.00	0.00
MK Accelerator	0.00	0.00

All of the claims made by GCP Applied Technologies with respect to the claims made above have been verified by independent 3rd parties.

Please feel free to contact me or any member of the Monokote® Fireproofing team should you require a project specific letter, additional information or clarification. Additionally a project specific letter may be obtained here.

We look forward to Monokote® Fireproofing being your product of choice when sustainability is important to you.

Sincerely,

John Dalton

Technical Service Manager Fire Protection Products GCP Applied Technologies

The Calo

gcpat.com

John Dalton Technical Service Manager 2325 Lakeview Pkwy,
Ste 450, Alpharetta, GA,
30009 USA

Separation

John Dalton
Technical Service Manages
+1 617 498 4935 Office
+1 781 258 6463 Mobile
John.a.dalton@gcpat.com John.a.dalton@gcpat.com

Environmental Product Declaration

An Environmental Product Declaration

According to ISO 14025:2006 and ISO 21930:2017

A Corporate Average Cradle-to-gate EPD for Standard, Medium and High & Ultra High-Density Spray-applied Fire-Resistive Materials (SFRMs)

This EPD has been prepared in conformance with ISO 14025, 14040, 14044 standards and according to the requirements of ISO 21930:2017 and ASTM International's EPD program operator rules. This EPD was commissioned by the GCP Applied Technologies and is verified by ASTM International to conform to the requirements of ISO 14040, 14044, 14025 and 21930.

ASTM International
West Conshohocken, PA

www.astm.org

Date of issue: 04.15.2022 Period of validity: 5 years

Declaration #: EPD 060

Environmental Product Declaration Summary

General Summary	
Owner of the EPD	GCP Applied Technologies Inc. (GCPAT)
	2325 Lakeview Parkway Suite 450,
	Alpharetta, GA 30009 U.S.A.
TM	Link (URL): https://gcpat.com
	With roughly 2,000 employees and 50 manufacturing facilities worldwide, GCP Applied Technologies serves customers in more than 100 countries.
gcp	GCPAT was formed in February 2016 by the spin-off of W. R. Grace & Co.'s construction products segment and its packaging technologies business.
	The owner of the declaration is liable for the underlying information and evidence.
SFRM Manufacturing Facilities	Ajax, Canada
	294 Clements Rd. West
	Ajax, Ontario L1S 3C6
	Irondale, United States
	2601 Commerce Blvd.
	Irondale, Alabama 35210
	Santa Ana, United States
	2500 & 2502 S. Garnsey Street
	Santa Ana, California 92707
Product Group and Name	Spray-applied Fire-Resistive Material (SFRM), UN CPC 54650.
Product Description	SFRM is composed primarily of binding agents such as cement or
•	gypsum and often contains other materials such as mineral wool,
	quartz, perlite, vermiculite, or bauxite along with various other
	ingredients
Reference Product Category Rules (PCR)	ISO 21930:2017 Sustainability in buildings and civil engineering works
	- Core rules for environmental product declarations of construction products and services.
Certification Period	04.15.2022 - 04.15.2027
Declared Unit	1,000 kg of SFRM

ASTM International Date of issue: 04.15.2022
West Conshohocken, PA Period of validity: 5 years

www.astm.org Declaration #: EPD 060

EPD and Project I	Report Information
-------------------	--------------------

Program Operator	ASTM International
Declaration Holder	GCP Applied Technologies Inc.

Declaration Type

A "Cradle-to-gate" EPD (Production stage) of GCPAT's production of standard, medium and high & ultra-high-density spray-applied fire-resistive material. The declaration presents a weighted average profile for all three North American facilities operated by GCP Applied Technologies Inc. that manufacture SFRMs. Product activities covered include the raw material supply, transport, and manufacturing (modules A1 to A3). The declaration is intended for Business-to-Business (B-to-B) communication.

Applicable Countries

United States and Canada

Product Applicability

SFRMs are used as part of a building's passive fire resistance strategy. SFRMs have thermal and acoustical properties and assists in controlling condensation. However, its main use is in insulating steel, metal decking and other assemblies from the high temperatures found during a fire. SFRMs are used to delay (or prevent) the weakening of steel and the spalling of concrete in structures that are exposed to the high temperatures found during a fire. They do this by thermally insulating the structural members to keep them below the temperatures that cause failure.

Content of the Declaration

This declaration follows *Section 9*; *Content of an EPD*, ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products and services.

This EPD was i	independently verified	
by ASTM in accordance with ISO 14025 and the core PCR ISO 21930:2017: Internal <u>External</u>		deligs Bearle
	X	Tim Brooke, ASTM International
The Project Re	eport	A Cradle-to-Gate Life Cycle Assessment of GCP Applied
Note that the	Project Report is not part of	Technologies Standard, Medium and High & Ultra High-Density
the public com	munication (ISO 21930, 10.1).	Spray-applied Fire-Resistive Materials (SFRMs). April 2022.
Prepared by		Lindita Bushi, PhD, Mr. Jamie Meil and
		Mr. Grant Finlayson
	Athena	Athena Sustainable Materials Institute
	Sustainable Materials	280 Albert Street, Suite 404
Jana	Institute	Ottawa, Ontario, Canada K1P 5G8
11111111		info@athenasmi.org
		www.athenasmi.org
verified by in	ect report was independently accordance with ISO 14025, and the core PCR ISO	Thomas Storie
		Thomas P. Gloria, Ph. D.

Industrial Ecology Consultants

ASTM International West Conshohocken, PA

www.astm.org

Date of issue: 04.15.2022 Period of validity: 5 years

Declaration #: EPD 060

1 PRODUCT IDENTIFICATION

1.1 PRODUCT DEFINITION

Spray-applied fire-resistive materials (UN CPC 54650) are composed primarily of binding agents such as cement or gypsum and often contain other materials such as quartz or bauxite along with various other ingredients. The other materials are used to help lighten the solution or to add air as an insulator. Chemical hardeners are sometimes used to either speed up hardening or to make the final fireproofing harder than the original.

Passive fire protection materials (commonly referred to as fireproofing) are used to prevent or delay the failure of steel and concrete structures exposed to fire. These materials are intended to insulate the structural members during the event of a fire, delaying any loss of the integrity of the structural members. There is an array of available fireproofing materials that can be used depending upon the specific application. Applied fireproofing is available as a wet or dry formula. It is typically sprayed but can also be troweled on. The fireproofing is generally delivered as a dry powder in bag, which is then mixed with water in the field. Modern formulas are asbestos-free and don't contain free crystalline silica. This is a company-specific EPD representing an array of available SFRMs produced at three of GCPAT's facilities located in North America and produced to various specifications as noted in Table 1. Table 1 summarizes key technical data for GCPAT SFRMs for the 2019 reference year (12 months). GCPAT SFRMs are classified in three major sub-categories based on the dry density minimum average values in pcf (pound per cubic foot). Full material selection guide and literature and the material safety data sheets are available for each of these fireproofing materials at https://gcpat.com.

Table 1. Technical Data for GCPAT SFRMs

Primary Binding Agent	GCPAT SFRM- Sub-category	Dry density, minimum average- in kg/m³ (pcf)	GCPAT Brand Names
Gypsum - based	Standard density	240 (15)	MK Patch (GF Pail), MK-10/HB EXT SET WHITE, MK-10/HB EXT SET, MK-10/HB WHITE, MK-1000/HB, MK-1000/HB EXT SET, MK-10/HB, MK-10/HB EXT SET, MK-6 EXT SET, MK-6/HY, MK-6/HY EXT SET, MK-6/HY CE, MK-6/HY EXT SET, MK-6S, MK-6S CE, RG, Z-3306/G
Cement- or gypsum- based or a blend	Medium density	352 (22)	SK-3, Z-106/G, Z-106/HY, Z-3306, Z-3306 Gray, Z-3306 White
Cement- based	High & ultra-high density	640 (40)	Z-146, Z-146PC, Z-146T, Z-156, Z-156PC, Z-156T

ASTM International West Conshohocken, PA

www.astm.org

Date of issue: 04.15.2022
Period of validity: 5 years
Declaration #: EPD 060

1.2 PRODUCT STANDARD

The physical characteristics of SFRM are determined according to various ASTM standards such as, but not limited to:

- E736/E736M-19, Standard Test Method for Cohesion/Adhesion of Sprayed Fire- Resistive Materials Applied to Structural Members
- E605/E605M-19, Standard Test Methods for Thickness and Density of Sprayed Fire-Resistive Material Applied to Structural Members
- E759/E759M-92(2020)e1 Standard Test Method for Effect of Deflection on Sprayed Fire-Resistive Material Applied to Structural Members
- E760/E760M-92(2020)e1 Standard Test Method for Effect of Impact on Bonding of Sprayed Fire-Resistive Material Applied to Structural Members
- E761/E761M-92(2020)e1 Standard Test Method for Compressive Strength of Sprayed Fire-Resistive Material Applied to Structural Members
- E859/E859M-93(2020)e1 Standard Test Method for Air Erosion of Sprayed Fire-Resistive Materials (SFRMs) Applied to Structural Members
- E937/E937M-93(2020)e1 Standard Test Method for Corrosion of Steel by Sprayed Fire-Resistive Material (SFRM) Applied to Structural Members.

2 DECLARED UNIT

The declared unit is 1,000 kg, 1 metric ton) of spray-applied fire-resistive materials (SFRM).

3 MATERIAL CONTENT

Table 2 shows the weighted average generic formulations for all three sub-categories of GCPAT fireproofing materials as produced at GCPAT's three manufacturing locations. For reasons of confidentiality a portion of each SFRM is reported as "additives".

Table 2: Weighted Average Generic Formulations for Standard, Medium, High & Ultra High Density SFRMs

Standard Density Medium Density		:у	High & Ultra High Density		
Material composition	%	Material composition	%	Material composition	%
Stucco (CaSO4 ½H2O)	87%	Stucco (CaSO4 ½H2O)	54%	Bauxite	49%
Recovered paper	5%	Portland cement	31%	Portland cement	41%
Limestone	3%	Clay	6%	Clay	3%
Rest- additives	5%	Rest- additives	9%	Rest- additives	6%
Total	100%	Total	100%	Total	100%

ASTM International
West Conshohocken, PA

www.astm.org

Date of issue: 04.15.2022
Period of validity: 5 years
Declaration #: EPD 060

Table 3 shows the amount of packaging materials per 1,000 kg of GCPAT SFRMs. Paper sacks are used for transporting fireproofing materials. The sacks are typically made of high-quality and weight kraft paper, usually virgin fiber.

Table 3: Packaging Materials for GCPAT SFRMs

Packaging materials	Quantity	Units (per 1,000 kg SFRM)
Paper Sacks	22.00	kg
Cardboard Core	0.30	kg

4 PRODUCTION STAGE

For this EPD, the boundary is "cradle-to-gate" or the *Production stage*, which includes the extraction of raw materials (cradle) through the manufacture of SFRM packaged ready for shipment (gate). Downstream activity stages - Construction, Use, End-of-life, and Optional supplementary information beyond the system boundary - are excluded from the system boundary (Figure 1).

Date of issue: 04.15.2022 Period of validity: 5 years

Declaration #: EPD 060

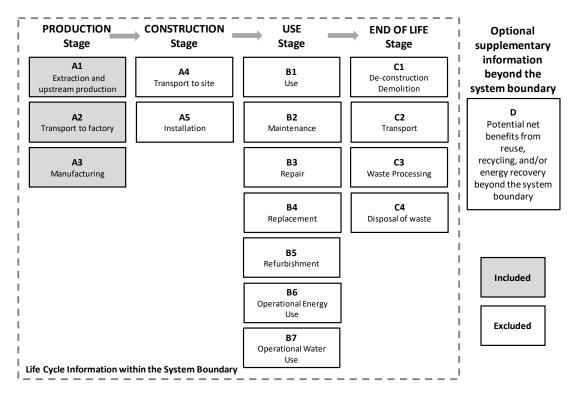


Figure 1 Common four life cycle stages and their information modules for construction products and the optional supplementary module [2]

The **Production stage** (modules A1 to A3) includes the following processes:

A1 Extraction and upstream production: Extraction and processing of input raw materials used in the production of standard, medium, high & ultra-high-density SFRMs, including fuels used in extraction and transport within the process.

A2 Transportation to factory: Transportation of input raw materials (including recovered materials) from extraction site or source to manufacturing facilities, including empty backhauls.

A3 Manufacturing: Manufacturing of the SFRMs, including all on-site energy and ancillary materials required and emissions to air, water and land and wastes produced. This also includes transportation from manufacturing site to landfill for on-site wastes, including empty backhauls and the waste disposal process. The A3 module includes grinding, mixing, blending, pneumatic conveying, high-speed auger packaging, lighting and heating, ventilation and air conditioning, operation of environmental equipment (baghouses and bin vents), on-site transportation (loading and unloading) and storage of SFRMs.

ASTM International
West Conshohocken, PA

www.astm.org

Date of issue: 04.15.2022 Period of validity: 5 years

Declaration #: EPD 060

5 LIFE CYCLE INVENTORY

5.1 DATA COLLECTION, SOURCE AND CALCULATIONS

LCI data collection was based on a customized survey of all three GCPAT's SFRM manufacturing sites. All facility specific LCI data were weighted based on facility level total annual production to calculate the weighted average LCI profile for each product type (per 1,000 kg). Data calculation procedures follow ISO 14044. Per ISO 21930, 7.2.2 the net calorific value (lower heating value) of fuels is applied according to scientifically based and accepted values specific to the combustible material.

5.2 DATA QUALITY REQUIREMENTS AND ASSESSMENTS

A detailed description of collected data and the data quality assessment regarding the core PCR requirements and ISO 14044 is provided in the LCA report. Data quality is assessed based on its representativeness (technology coverage, geographic coverage, time coverage), completeness, consistency, reproducibility, transparency, and uncertainty (Table 4).

Table 4 Data Quality Requirements and Assessments

Data Quality Requirements	Description
Technology Coverage	Data represents the prevailing company technology in use in U.S. and Canada. Whenever available, for all upstream and core material and processes, North American typical or average industry LCI datasets were utilized. Technological representativeness is characterized as "high".
Geographic Coverage	The geographic region considered is U.S. and Canada. The geographic coverage of all LCI databases and datasets is given in in the LCA background report. Geographical representativeness is characterized as "high".
Time Coverage	Activity data are representative as of 2019. - SFRM manufacturing process- primary data collected from 3 facilities: reference year 2019 (12 months); - In-bound/ out-bound transportation data- primary data collected from 3 facilities: reference year 2019 (12 months); - Generic data: the most appropriate LCI datasets were used as found in the US LCI Database, ecoinvent v.3.7.1 database, 2021. Temporal representativeness is characterized as "high".
Completeness	All relevant, specific processes, including inputs (raw, secondary, ancillary, and packaging materials, and energy flows) and outputs (emissions and production volume) were considered and modeled to provide a weighted average for the SFRM products of interest. The relevant background materials and processes were taken from the US LCI Database, ecoinvent 3.7.1 LCI database, and modeled in SimaPro v9.2.0.2, 2021. The completeness of the cradle-to-gate process chain in terms of process steps is rigorously assessed for SFRM products of interest and documented in the LCA background report.

ASTM International Date of issue: 04.15.2022
West Conshohocken, PA Period of validity: 5 years

www.astm.org Declaration #: EPD 060

Data Quality Requirements	Description
Consistency	To ensure consistency, the LCI modeling of the production weighted input and output LCI data for the SFRM product of interest used the same LCI modeling structure across the 3 facilities, which consisted of input raw, secondary, ancillary, and packaging materials, energy flows, water resource inputs, product outputs, co-products, by-products, emissions to air, water and soil, and solid and liquid waste disposal. Crosschecks concerning the plausibility of mass and energy flows were continuously conducted. The LCA team conducted mass and energy balances at the facility level and selected process levels to maintain a high level of consistency.
Reproducibility	Internal reproducibility is possible since the data and the models are stored and available in <i>GCPAT_SFRM_LCI database</i> developed in SimaPro, 2021. A high level of transparency is provided throughout the report as the weighted average LCI profile is presented for each of the declared products as well as major upstream inputs. Key primary (manufacturer specific) and secondary (generic) LCI data sources are summarized in Annex C. External reproducibility is also possible as a high level of transparency is provided throughout the Project Report and LCI data and sources are also summarized.
Transparency	Activity and LCI datasets are transparently disclosed in the project report, including data sources.
Uncertainty	A sensitivity check was conducted to assess the reliability of the EPD results and conclusions by determining how they are affected by uncertainties in the data or assumptions on calculation of LCIA and energy indicator results. The sensitivity check includes the results of the sensitivity analysis and Monte Carlo uncertainty analysis both of which are summarized in the LCA report.

5.3 ALLOCATION AND CUT-OFF RULES

"Mass" was deemed as the most appropriate physical parameter for allocation used for the SFRMs manufacturing system to calculate the input energy flows (electricity, natural gas, and propane), packaging materials and waste flows per declared unit of 1,000 kg of SFRM. LCI modeling accounts for the plant specific fabrication yields in accordance with ISO 14044, 4.3.4.2.

Secondary materials such as hammermilled newsprint and post-industrial polystyrene are considered recovered materials. However, only the materials, water, energy, emissions, and other elemental flows associated with reprocessing, handling, sorting, and transportation from the generating industrial process to their use in the production process are considered. Any allocated burdens before reprocessing are allocated to the original product. Allocation related to transport are based on the mass of transported product.

The cut-off criteria as per ISO 21930, were followed for this EPD. All input/output data required were collected and included in the LCI modelling. No substances with hazardous and toxic properties that pose a concern for human health and/or the environment were identified in the framework of this EPD. Any data gaps for the reference year 2019 - e.g., packaging materials were filled in with plant generic data from previous years.

ASTM International West Conshohocken, PA

www.astm.org

Date of issue: 04.15.2022 Period of validity: 5 years

Declaration #: EPD 060

The Production Stage excludes the following processes:

- Capital goods and infrastructure;
- Human activity and personnel related activity (travel, furniture, office operations and supplies);
- Energy and water use related to company management and sales activities that may be located either within the factory site or at another location.

6 LIFE CYCLE ASSESSMENT

6.1 RESULTS OF THE LIFE CYCLE ASSESSMENT

This section summarizes the product stage life cycle impact assessment (LCIA) results including resource use and waste generated metrics based on the cradle-to-gate life cycle inventory inputs and outputs analysis. Table 5 presents the calculated results for each product density based on 1,000 kg (1 metric ton). It is noted that LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks [2], [3].

Date of issue: 04.15.2022

Period of validity: 5 years Declaration #: EPD 060

Table 5 Production Stage (A1-A3), EPD Results for 1,000 kg standard, medium, high & ultra-high density SFRMs

Impact category and inventory indicators	Unit	Standard Density (min 15 pcf)	Medium Density (min 22 pcf)	High & Ultra High Density (min 40 pcf)
Global warming potential, GWP 100 ¹⁾ , AR5	kg CO₂ eq	210	493	621
Ozone depletion potential, ODP ¹⁾	kg CFC-11 eq	1.2E-04	1.3E-04	1.4E-04
Smog formation potential, SFP ¹⁾	kg O₃ eq	29.1	35.3	52.5
Acidification potential, AP ¹⁾	kg SO₂ eq	1.4	1.9	2.6
Eutrophication potential, EP ¹⁾	kg N eq	0.33	0.67	0.89
ADP elements, CML ²⁾	kg Sb eq	1.0E-04	6.6E-04	1.8E-03
ADP surplus, TRACI ¹⁾	MJ surplus	515	607	683
Renewable primary resources used as an energy carrier (fuel), RPR _E ³⁾	MJ LHV	166.9	405.6	450.3
Renewable primary resources with energy content used as material, RPR _M ³⁾	MJ LHV	0	0	0
Non-renewable primary resources used as an energy carrier (fuel), NRPR _E ³⁾	MJ LHV	3,849	5,051	5,833
Non-renewable primary resources with energy content used as material, NRPR _M ³⁾	MJ LHV	0	0	0
Secondary materials, SM ³⁾	kg	71	90	63
Renewable secondary fuels, RSF ³⁾	MJ LHV	0.080	17	23
Non-renewable secondary fuels, NRSF ³⁾	MJ LHV	0.77	167	218
Recovered energy, RE ³⁾	MJ LHV	0	0	0
Consumption of freshwater, FW ³⁾	m^3	0.31	0.62	0.64
Hazardous waste disposed, HWD ³⁾	kg	0.035	0.027	0.009
Non-hazardous waste disposed, NHWD ³⁾	kg	19.9	116.0	143.5
High-level radioactive waste, conditioned, to final repository, HLRW ³⁾	m^3	9.8E-07	9.8E-07	1.0E-06
Intermediate- and low-level radioactive waste, conditioned, to final repository, ILLRW ³⁾	m³	2.8E-06	3.3E-06	5.0E-06
Components for re-use, CRU ³⁾	kg	0	0	0
Materials for recycling, MR ³⁾	kg	0	0	0
Materials for energy recovery, MER ³⁾	kg	0	0	0
Recovered energy exported from the product system, EE ³⁾	MJ LHV	0.0029	0.62	0.81
Global warming potential - biogenic, GWP-100 bio ³⁾⁴⁾		1.1E-03	0.23	0.30
Emissions from calcination ^{3}4)}		0.71	152.3	200.0

ASTM International

West Conshohocken, PA

www.astm.org

Date of issue: 04.15.2022

Period of validity: 5 years

Declaration #: EPD 060

Impact category and inventory indicators	Unit	Standard Density (min 15 pcf)	Medium Density (min 22 pcf)	High & Ultra High Density (min 40 pcf)
Emissions from combustion of waste from renewable sources ³⁾⁴⁾		3.00E-04	0.064	0.085
Emissions from combustion of waste from non-renewable sources ³⁾⁴⁾		0.072	15.5	20.3
Removals associated with biogenic carbon content of the bio-based product ³⁾		-98.0	-66.2	-41.5
Removals associated with biogenic carbon content of the bio-based packaging ³⁾		-40.9	-40.9	-40.9

Table Notes:

6.2 INTERPRETATION

The cradle-to-gate manufacture of **standard density SFRM** embodies about 4 GJ of primary energy (LHV) and emits 210 kg CO2 eq of greenhouse gases per ton of product. Around 96% of the total primary energy input is derived from non-renewable primary energy resources. Across the three standard density production information modules, Module A1 extraction and upstream production contributes the largest share of the LCIA and energy indicator results – accounting for between 60% (NRPR_E) and 54% (GWP-100) of the potential environmental burdens. Module A3 Manufacturing is generally the second largest contributor to the overall potential environmental impacts – accounting for 32% and 29% of GWP and non-renewable energy use, respectively. Except for acidification (26%) and smog potential impacts (35%), Module A2 Transportation is generally a minor contributor (<15%) to the overall potential environmental impacts of standard density SFRM production.

The cradle-to-gate manufacture of **medium density SFRM** embodies about 5.5 GJ of primary energy (LHV) and emits 493 kg CO2 eq of greenhouse gases per ton of product. About 93% of the total primary energy input is derived from non-renewable primary energy resources. Across the three medium density production information modules, Module A1 extraction and upstream production contributes the largest share of the LCIA and energy indicator results – accounting for 82% (GWP-100), 72% (NRPRE) and over 50% of both acidification and smog formation burdens. Unlike standard density SFRM, Module A3 Manufacturing is a more minor contributor to the overall potential environmental impacts of medium density SFRM – accounting for 17% of NRPR_E and 9% of GWP-100. Module A2 Transportation is a significant contributor to SFP (37%), AP (27%) and GWP (9%) to the overall potential environmental impacts of medium density SFRM manufacture.

ASTM International West Conshohocken, PA

www.astm.org

Date of issue: 04.15.2022

Period of validity: 5 years Declaration #: EPD 060

¹⁾ Calculated as per U.S EPA TRACI 2.1, v1.05, SimaPro v 9.2.0.2. GWP₁₀₀, excludes biogenic CO₂ removals and emissions; 100-year time horizon GWP factors are provided by the IPCC 2013 Fifth Assessment Report (AR5), TRACI 2.1, with AR5, v1.05.

²⁾ Calculated as per CML-IA Baseline V3.05, SimaPro v 9.2.0.2.

³⁾ Calculated as per ACLCA ISO 21930 Guidance, respective sections 6.2 to 10.8.

⁴⁾ Applicable for Portland cement only, used in manufacturing of the GCPAT SFRM [11].

The cradle-to-gate manufacture of **high and ultra-high density SFRM** embodies about 6.3 GJ of primary energy (LHV) and emits 621 kg CO2 eq of greenhouse gases per ton of product. Almost 93% of the total primary energy input is derived from non-renewable primary energy resources. Across the three high and ultra-high density production information modules, Module A1 extraction and upstream production contributes the largest share of the key LCIA and energy indicator results – accounting for 80% (GWP-100), 67% (NRPRE) and 78% of eutrophication potential burden. Similar to medium density SFRM, Module A3 Manufacturing is a more minor contributor to the overall potential environmental impacts of high and ultra-high density SFRM – accounting for 15% of NRPRE and 13% of GWP-100. Module A2 Transportation is a significant contributor to SFP (53%), AP (39%) and GWP (9%) to the overall potential environmental impacts of high and ultra-high density SFRM manufacture.

7 ADDITIONAL ENVIRONMENTAL INFORMATION

Standard, medium and high & ultra-high density SFRMs use between 2% to 7% recovered materials (hammermilled newsprint and post-industrial polystyrene).

8 DECLARATION TYPE

GCPAT SFRM EPD is categorized as follows:

- A corporate specific product EPD, averaged across the manufacturer's plants.

This declaration presents a weighted average EPD for three SFRM North American facilities operated by GCPAT. Product activities covered include the raw material supply, transport and manufacturing (modules A1 to A3). The declaration is intended for Business-to-Business (B-to-B) communication.

9 DECLARATION COMPARABILITY LIMITATION STATEMENT

- Only EPDs prepared from cradle-to-grave life cycle results and based on the same function, RSL, quantified by the same functional unit, and meeting all the conditions for comparability listed in ISO 14025:2006 and ISO 21930:2017 can be used to comparison between products.

ASTM International West Conshohocken, PA

www.astm.org

Date of issue: 04.15.2022 Period of validity: 5 years

Declaration #: EPD 060

10 EPD EXPLANATORY MATERIAL

For any explanatory material, regarding this EPD please contact the program operator.

ASTM International

Environmental Product Declarations

100 Barr Harbor Drive,

West Conshohocken,

PA 19428-2959,

http://www.astm.org

11 REFERENCES

- 1. ISO 14025:2006 Environmental labeling and declarations Type III environmental declarations Principles and procedures.
- 2. ISO 21930:2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services.
- 3. ISO 14040:2006/Amd 1:2020 Environmental management Life cycle assessment Principles and framework.
- 4. ISO 14044:2006/Amd1:2017/Amd2:2020 Environmental management Life cycle assessment Requirements and guidelines.
- 5 ASTM Program Operator Rules. Version: 8.0, Revised 04/29/20.
- 6 ISO 14021:2016 Environmental labels and declarations Self-declared environmental claims (Type II environmental labelling).
- 7. PRé 2019.SimaPro LCA Software v9.2.0.2, 2021, https://simapro.com/
- 8. LEED v4, Building Design and Construction Guide (BD+C), MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Option 2 Multi-attribute optimization (1 point). https://www.usgbc.org/node/2616376?return=/credits/new-construction/v4/material-%26amp%3B-resources.
- 9. LEED v4.1, Building Design and Construction Guide (BD+C), MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Option 2 Multi-attribute optimization (1 point).
 - $\underline{https://leeduser.buildinggreen.com/credit/NC-v4.1/MRc2\#tab-credit-language.}$
- ACLCA 2019, Guidance to Calculating Non-LCIA Inventory Metrics in Accordance with ISO 21930:2017. The American Centre for Life Cycle Assessment. May 2019. https://aclca.org/aclca-iso-21930-guidance/
- 11. PCA 2021, EPD, Portland Cement- Industry-wide. https://www.astm.org/products-services/certification/environmental-product-declarations/epd-pcr.html
- 12. Athena 2021, A Cradle-to-Gate Life Cycle Assessment of GCP Applied Technologies Standard, Medium and High & Ultra High-Density Spray-applied Fire-Resistive Materials (SFRMs), Final Report.

ASTM International
West Conshohocken, PA

www.astm.org

Date of issue: 04.15.2022
Period of validity: 5 years
Declaration #: EPD 060

2325 Lakeview Pkwy, Ste 450, Alpharetta, GA, 30009 USA

gcpat.com

John Dalton
Technical Service Manager
+1 617 498 4935 Office
+1 781 258 6463 Mobile
John.a.dalton@gcpat.com

Declare Label

Monokote Z-106/HY GCP- Applied Technologies

Final Assembly: Santa Ana, California, USA; Ajax, Ontario,

Canada

Life Expectancy: 50 Year(s)

End of Life Options: Landfill (100%)

Ingredients:

Portland Cement; Calcium Sulfate, Natural; Cellulosic Fiber; Expanded Polystyrene; Fullers Earth; Chopped Glass Fiber; Quartz

Living Building Challenge Criteria: Compliant

I-13 Red List:

■ LBC Red List Free

% Disclosed: 100% at 100ppm

☐ LBC Red List Approved

VOC Content: 0 g/L

□ Declared

I-10 Interior Performance: CDPH Standard Method v1.2-2017

I-14 Responsible Sourcing: Not Applicable

WRG-0004 EXP. 01 MAR 2023 Original Issue Date: 2017

MANUFACTURER RESPONSIBLE FOR LABEL ACCURACY
INTERNATIONAL LIVING FUTURE INSTITUTE™ living-future.org/declare

gcpat.com

2325 Lakeview Pkwy,
Ste 450, Alpharetta, GA,
30009 USA

Volatile Organic Compounds (VOCs) Content Report

VTEC Laboratories, Inc.

212 Manida Street, Bronx, NY 10474 Office: 718-542-8248 *** FAX: 718-542-8759

Neil@VTECLABS.com // jerry@vteclabs.com

JOB ID: V100-4371/Rev.1 (included reference to ASTM D2369 w/ EPA-24) // Grace Construction Products

ATTN: John A. Dalton / Tech-Svc Engineer, 62 Whittemore Ave, Cambridge, MA 02140

TEL: 617-498-4935 // FAX: 617-498-4419 // E-Mail: john.a.dalton@grace.com

SAMPLE ID: Three (3) Composite Coating Powders = Z146, MK6-HY and Z106-HY

SCOPE: Analyze per EPA Method 24 / ASTM D3960 for VOC Content

SUBMISSION DATE: 2-Jul-13

ANALYZED BY: Dr. Jerry DeMenna, Director of Analytical Research

REPORT DATE: 3-Jul-13

Re-Issued: 26-Jul-13

PROCEDURES:

Two (2) Standard Analytical Methods were followed to determine Volatile Organic Compounds (VOCs) in assorted Paints, Coatings & Aerosol Sprays

- (a) TOTAL Organic Solvents (VOCs) defined by ASTM D2369:2003 (equivalent to EPA Method 24) using Gravimetry: 10 gms weighed into a Tared Dish, dried @ 110°C for 6 hours & re-weighed to determine the Loss as VOC.
- (b) Volatile Organic Solvents defined by ASTM D3960 using GC-FID: 5.0 gms weighed into a 40ml VOC Vial, pressurized with Helium and heated to 110°C for 20 minutes then analyzed w/ a standard VOC / Head-Space GC program using FID for TOTAL VOC Content based on Total FID response.

DATA Results:

The results are for the Testing listed above, using EPA and ASTM protocols and NIST-Traceable Standards, where available, for calibration of the respective Instruments:

	ASTW D2309:2003 (EPA-24)	ASTW-D3960
SAMPLE TEST	<u>Results</u>	<u>Results</u>
Z-146 / Inorganic Mineral Blend	< 0.5% (vol%)	< 0.01% (vol%)
MK-6 HY / Mineral-Polymer Blend	< 0.5% (vol%)	< 0.01% (vol%)
Z-106 HY / Mineral-Polymer Blend	< 0.5% (vol%)	< 0.01% (vol%)
Method Detection Limit	0.5%	0.01%

Findings:

This Data confirms there are no VOCs detected by both the EPA and the ASTM Standard Methods.

Jerry DeMenna

Dr. Jerry DeMenna, Ph.D. / Laboratory Mgr.

DISCLAIMER: This is a factual report of the results obtained from the Analytical Laboratory testing of the aforementioned products. These results may be considered in application to the specific products tested in this report, and should not be construed as representative of the composition of other, similar products from the manufacturer. This report shall not be considered a recommendation or disapprobation by VTEC Laboratories, Inc., of the materials tested. This report may be used for obtaining product acceptance and for general characterization of the materials, but shall not be used in any advertising situations. VTEC Laboratories, Inc. shall not be liable for any loss or damages resulting from the use of the data in this report.

NOTICE: VTEC Laboratories, Inc. shall not be liable for any loss or damages resulting from the use of the data in this report; in excess of the invoice. The information in this report pertains to this sample(s) only. This report shall not be interpreted to be any form of warranty, either expressed or implied, as to the suitability or fitness of said sample(s) for such uses and/or applications, as the party contracting for the report may apply to such sample(s).

gcpat.com

2325 Lakeview Pkwy,
Ste 450, Alpharetta, GA,
30009 USA

Volatile Organic Compounds (VOCs) Emissions Report

©2018 UL LLC

Supersedes Test Report #: 18538-04

John Dalton GCP Applied Technologies Concrete Operating Unit, 62 Whittemore Ave Cambridge, MA 02140

Subject: Project 18538-040AA - Test Results

Thank you for choosing UL Environment, and its ISO/IEC 17025 accredited testing laboratory, for your analytical needs. GCP Applied Technologies' "Z-106/HY, Z-3306" was tested by our laboratory for low emitting materials.

Testing was conducted in small environmental chambers following the principles of ASTM D 5116 with the defined product specific test protocols and IAQ emission requirements of the State of California's Indoor Air Quality Program, "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources using Environmental Chambers" (aka CA Section 01350).

Calculations were performed using the parameters below to estimate the concentrations of VOCs of concern for use in a classroom environment and in an office environment.

Ventilation Rate	Ventilation Rate Room Volume	
CLASSROOM		
0.82 air changes per hour (ACH)	12.2 m x 7.32 m x 2.59 m = 231 m ³ (40 x 24 x 8.5 ft = 8,160 ft ³)	89.2 m²
PRIVATE OFFICE		
0.68 air changes per hour (ACH)	3.66 m x 3.05 m x 2.74 m = 30.6 m ³ (12 x 10 x 9 ft = 1,080 ft ³)	11.1 m²

The product mentioned above as received and tested meets the Section 1350 requirements for use in a classroom and in an office with the above parameters.

If you have any questions or concerns about the test results, please contact your Account Manager at (888) 485-4733.

Sincerely,

Allyson M. McFry

allyn Mcfry

Chemistry Laboratory Director

This report shall not be reproduced, except in full, without permission from UL. Results contained within this report only apply to the actual product tested under the testing conditions documented in this report.

©2018 UL LLC

Supersedes Test Report #: 18538-04

VOC EMISSION RESULTS COMPARISON TO STANDARD

Standard referenced: CDPH/EHLB/Standard Method V1.2 (January 2017) "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers" (aka CA Section 01350).

PRODUCT SAMPLE INFORMATION

Manufacturer:	GCP Applied Technologies		
Product Description:	Z-106/HY, Z-3306		
Product Type:	Surfacing Materials		
Sample Identification:	UL Environment's 18538-040AA		
Manufactured Date:	08/01/2017		
Test Completed on:	02/05/2018		
Expiration Date:	02/05/2019		

TEST RESULTS COMPARISION TO STANDARD CRITERIA

Environment:	CLASS	ROOM	OFFICE		
Surface Area:	89.2	2 m²	11.1 m²		
Criterion:	Criterion	Criterion Meets?		Meets?	
Individual VOC:	≤½ REL	Yes	≤ ½ REL	Yes	
Formaldehyde:	≤ 9.0 µg/m³	Yes	≤ 9.0 µg/m³	Yes	

Environment:	CLASSROOM	OFFICE
Surface Area:	89.2 m²	11.1 m²
TVOC:	0.5 mg/m³ or less	0.5 mg/m³ or less

TVOC comparison is based on LEED BD+C: New Construction v4 (LEED v4), Indoor environmental quality (EQ) category/Low-emitting materials credit/Emissions and content requirements/General emissions evaluation. http://www.usgbc.org/node/2614095?return=/credits/new-construction/v4/indoor-environmental-guality

Reviewed By	Allyson McFry Chemistry Laboratory Manager
-------------	--

Disclaimer: This Comparison affirms that: 1) the product sample was tested according to the referenced standard; 2) the measured VOC emissions were evaluated for the defined exposure scenario(s); and 3) if so indicated above that the results meet the criteria of the referenced standard(s). UL Environment did not select the samples, determine if the samples were representative of production samples, witness the production of test samples, or were we provided with information relative to the formulation or identification of component materials used in the test samples. The test results apply only to the actual samples tested. The issuance of this Comparison in no way implies Listing, Classification or Recognition by UL and does not authorize the use of UL Listing, Classification or Recognition Marks or any other reference to UL on the product or system. UL Environment authorizes the above named company to reproduce this Comparison provided it is reproduced in its entirety. The name, brand or marks of UL cannot be used in any packaging, advertising, promotion or marketing relating to the data in this Comparison, without UL's prior written permission. UL, its subsidiaries, employees and agents shall not be responsible to anyone for the use or nonuse of the information contained in this Comparison, and shall not incur any obligation or liability for damages, including consequential damages, arising out of or in connection with the use of, or inability to use, the information contained in this Comparison.

©2018 UL LLC

Supersedes Test Report #: 18538-04

INDOOR AIR QUALITY EVALUATION FOLLOWING THE REQUIREMENTS OF CDPH/EHLB/STANDARD METHOD

PREPARED FOR: GCP APPLIED TECHNOLOGIES

MANUFACTURER INFORMATION

Manufacturer	GCP Applied Technologies
Contact Name and Title	John Dalton
Contact Address	Concrete Operating Unit, 62 Whittemore Ave Cambridge, MA 02140
Contact Phone Number	(617) 498-4935

PRODUCT INFORMATION

Product Description	Z-106/HY, Z-3306
Manufacturer Product ID	Not provided
Product Category	Surfacing Materials
Product Sub-Category	Surfacing (Thin) - Ceiling Usage
Manufacturing Location	Not provided
Date Manufactured	August 1, 2017
Date Collected	Not Provided
Date Shipped	January 18, 2018
Date Received	January 19, 2018

Released by:

Allyson M. McFry Chemistry Laboratory Director

©2018 UL LLC

Supersedes Test Report #: 18538-04

EXECUTIVE SUMMARY

PROJECT DESCRIPTION

UL Environment, and its ISO/IEC 17025 accredited testing laboratories, presents the results of its indoor air evaluation of a product identified as "Z-106/HY, Z-3306" submitted by GCP Applied Technologies. UL Environment conducted this study using a product evaluation test protocol following California's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources using Environmental Chambers" (aka CA Section 01350) (1). Test chamber methodology followed the guidance of ASTM D 5116 (2), volatile organic compound (VOC) analysis followed the methodology in EPA TO-17 (3) and ASTM D 6196 (4), and analysis for low molecular weight aldehydes, including formaldehyde and acetaldehyde, followed the methodology in ASTM D 5197 (5). The definition for total VOCs (TVOC) is from ISO 16000-6 (6). The quantifiable level for all compounds is 2 μ g/m³. All identified target list compounds are quantified using authentic standards. Identified substances not on one of the designated toxics list are quantified using either authentic standards or surrogates and are notated appropriately.

The product was monitored for emissions of TVOC, individual VOCs, formaldehyde and other aldehydes over the 96-hour test period. Measurements were made and predicted exposures were calculated according to the CA Section 01350 protocol. As specified in this protocol, the results at 96 hours, after 10 days of conditioning, were compared to ½ (one-half) the current Chronic Reference Exposure Levels (CRELs), as adopted from the California OEHHA list (7). All identified VOCs were also compared to the California-EPA OEHHA Proposition 65 list (8) and the California-EPA Air Resource Board list of Toxic Air Contaminants (TACs) (9).

RESULTS

The calculation parameters and results for the tested product identified as "Z-106/HY, Z-3306" are shown below:

Environment	Ventilation Rate (ACH)	Room Volume	Product Usage	Product Surface Area	Product Compliance?
CLASSROOM	0.82	12.2 m x 7.32 m x 2.59 m = 231 m ³ (40 x 24 x 8.5 ft = 8,160 ft ³)	Ceiling	89.2 m²	Yes
OFFICE	0.68	3.66 m x 3.05 m x 2.74 m = 30.6 m ³ (12 x 10 x 9 ft = 1,080 ft ³)	Ceiling	11.1 m²	Yes

©2018 UL LLC

Supersedes Test Report #: 18538-04

TABLE 1

ENVIRONMENTAL CHAMBER STUDY PARAMETERS PREPARED FOR: GCP APPLIED TECHNOLOGIES

PRODUCT 18538-040AA

Product Description: SURFACING MATERIALS; Z-106/HY, Z-3306

Date Received at UL Environment: January 19, 2018

Sample Preparation: The product was received by UL Environment as packaged

and shipped by the customer. The package was visually inspected and stored in a controlled environment immediately following sample check-in. Just prior to loading, the product was unpackaged and prepared for the required loading to expose the finished surfaces only. The sample was placed inside the environmental chamber and tested according to

the specified protocol.

Conditioning Period: 01/22/2018 - 02/01/2018

Test Period: 02/01/2018 - 02/05/2018

Product Area Exposed: one-sided area = 0.0361 m²

Chamber Volume: 0.0943 m³

Product Loading Ratio: 0.38 m²/m³

Test Chamber Conditions: Air change rate: $1.00 \pm 0.05 \text{ 1/h}$

Inlet air flow rate: $0.0943 \pm 0.004 \, \text{m}^3/\text{h}$

Temperature*: 21.4°C - 21.8°C Relative Humidity: 50% RH ± 5%

^{*}Actual temperature range was outside 23°C ± 1.0°C

©2018 ÜL LLC

Supersedes Test Report #: 18538-04

TABLE 2

COMPARISON OF DATA TO CA SECTION 01350 TARGET CRELS AT 96 HOURS FOLLOWING 10 DAYS OF CONDITIONING

PREPARED FOR: GCP APPLIED TECHNOLOGIES PRODUCT 18538-040AA; Z-106/HY, Z-3306

Compound Name	CAS Number	½ CREL (μg/m³)	Chamber Concentration (µg/m³)	Emission Factor ^{††} (µg/m²•hr)	Classroom Predicted Concentration (µg/m³)**	Office Predicted Concentration (µg/m³)**	Meets ½ CREL? (Classroom/ Office)
Acetaldehyde	75-07-0	70	BQL	BQL			Yes
Benzene	71-43-2	1.5	BQL	BQL			Yes
Carbon disulfide	75-15-0	400	BQL	BQL			Yes
Carbon tetrachloride	56-23-5	20	BQL	BQL			Yes
Chlorobenzene	108-90-7	500	BQL	BQL			Yes
Chloroform	67-66-3	150	BQL	BQL			Yes
Dichlorobenzene (1,4-)	106-46-7	400	BQL	BQL			Yes
Dichloroethylene (1,1)	75-35-4	35	BQL	BQL			Yes
Dimethylformamide (N,N-)	68-12-2	40	BQL	BQL			Yes
Dioxane (1,4-)	123-91-1	1,500	BQL	BQL			Yes
Epichlorohydrin*	106-89-8	1.5	BQL	BQL			Yes
Ethylbenzene	100-41-4	1,000	BQL	BQL			Yes
Ethylene glycol	107-21-1	200	BQL	BQL			Yes
Ethylene glycol monoethyl ether acetate	111-15-9	150	BQL	BQL			Yes
Ethylene glycol monoethyl ether	110-80-5	35	BQL	BQL			Yes

Released by UL Environment

Date Issued: August 2, 2018
Product ID #: 18538-040AA
Test Report #: 18538-04R1

©2018 UL LLC

Supersedes Test Report #: 18538-04

Compound Name	CAS Number	½ CREL (μg/m³)	Chamber Concentration (µg/m³)	Emission Factor ^{††} (µg/m²•hr)	Classroom Predicted Concentration (µg/m³)**	Office Predicted Concentration (µg/m³)**	Meets ½ CREL? (Classroom/ Office)
Ethylene glycol monomethyl ether acetate	110-49-6	45	BQL	BQL			Yes
Ethylene glycol monomethyl ether	109-86-4	30	BQL	BQL			Yes
Formaldehyde	50-00-0	9.0***	BQL	BQL			Yes
Hexane (n-)	110-54-3	3,500	BQL	BQL			Yes
Isophorone	78-59-1	1,000	BQL	BQL			Yes
Isopropanol	67-63-0	3,500	BQL	BQL			Yes
Methyl chloroform	71-55-6	500	BQL	BQL			Yes
Methyl t-butyl ether	1634-04-4	4,000	BQL	BQL			Yes
Methylene chloride	75-09-2	200	BQL	BQL			Yes
Naphthalene	91-20-3	4.5	BQL	BQL			Yes
Phenol	108-95-2	100	BQL	BQL			Yes
Propylene glycol monomethyl ether	107-98-2	3,500	BQL	BQL			Yes
Styrene	100-42-5	450	BQL	BQL			Yes
Tetrachloroethylene (perchloroethylene)	127-18-4	18	BQL	BQL			Yes
Toluene	108-88-3	150	BQL	BQL			Yes
Trichloroethylene	79-01-6	300	BQL	BQL			Yes
Vinyl acetate	108-05-4	100	BQL	BQL			Yes
Xylenes (m-, o-, p-)	1330-20-7	350	BQL	BQL			Yes

BQL denotes below quantifiable level of 2 µg/m³ (instrument calibration using authentic standard).

^{††}The emission factor (EF) is calculated from the chamber concentration (CC), the chamber air change rate (N_C), the chamber volume (V_C), and the product area exposed in the chamber (A_C) as: EF = (CC*V_C*N_C)/A_C.

^{*}Denotes compound is within volatility range of method but no calibration standard was available.

^{**}The predicted building exposure concentration (BC) is calculated from the emission factor (EF), the building air change rate (N_B), the building room volume (V_B), and the product area exposed in the building room (A_B) as: BC = (EF*A_B)/(V_B*N_B). Prediction based on a standard classroom ceiling usage of 89.2 m² in a 231 m³ room with 0.82 ACH or on a standard office ceiling usage of 11.1 m² in a 30.6 m³ room with 0.68 ACH.

^{***}Guidance value per CA Standard Method

©2018 UL LLC

Supersedes Test Report #: 18538-04

TABLE 3

CHAMBER CONCENTRATIONS AND EMISSION FACTORS FOR TVOC AND FORMALDEHYDE AT 24, 48, AND 96 HOURS **FOLLOWING 10 DAYS OF CONDITIONING**

PREPARED FOR: GCP APPLIED TECHNOLOGIES PRODUCT 18538-040AA; Z-106/HY, Z-3306

ELAPSED EXPOSURE HOUR AFTER 10 DAYS CONDITIONING	CHAMBER CONCENTRATION (µg/m³)	EMISSION FACTOR ^{††} (μg/m²•hr)					
TVOC [†]							
24	BQL	BQL					
48	BQL	BQL					
96	BQL	BQL					
Formaldehyde [‡]							
24	2.1	5.5					
48	BQL	BQL					
96	BQL	BQL					

BQL denotes below quantifiable level of 2 µg/m³.

Exposure hours are nominal (± 1 hour).

 $^{^{\}dagger}$ Defined as the sum of those VOCs that elute between the retention times of n-hexane (C_6) and n-hexadecane (C_{16}) on a non-polar capillary GC column quantified based on a toluene response factor.

Compound identified and quantified by DNPH derivitization and HPLC/UV analysis.

The emission factor (EF) is calculated from the chamber concentration (CC), the chamber air change rate (Nc), the chamber volume (Vc), and the product area exposed in the chamber (A_C) as: EF = $(CC^*V_C^*N_C)/A_C$.

©2018 UL LLC

Supersedes Test Report #: 18538-04

TABLE 4

CHAMBER CONCENTRATIONS, EMISSION FACTORS, AND PREDICTED EXPOSURE CONCENTRATIONS FOR THE TVOC & TEN MOST ABUNDANT IDENTIFIED INDIVIDUAL **VOLATILE ORGANIC COMPOUNDS (VOCs) AND/OR ALDEHYDES** AT 96 HOURS FOLLOWING 10 DAYS OF CONDITIONING

PREPARED FOR: GCP APPLIED TECHNOLOGIES PRODUCT 18538-040AA; Z-106/HY, Z-3306

CAS NUMBER		COMPOUND	CHAMBER CONC. (µg/m³)	EMISSION FACTOR ^{††} (µg/m²•hr)	CALCULATED EXPOS CONCENT (µg/	SURE RATION** m³)
					Classroom	Office
	TVOC ^{‡‡}		BQL	BQL		
	none	·				

Exposure hours are nominal (± 1 hour).

VOC data obtained by scanning GC/MS; identification of compound made by retention time and mass spectral characteristics.

[†]Quantified using multipoint authentic standard curve. Other VOCs quantified relative to toluene.

^{*}Identification based on NIST mass spectral database only.

[‡]Compound identified and quantified by DNPH derivitization and HPLC/UV analysis.

^{††}The emission factor (EF) is calculated from the chamber concentration (CC), the chamber air change rate (N_C), the chamber volume (V_C), and the

product area exposed in the chamber (A_C) as: EF = ($CC^*V_C^*N_C$)/ A_C .

The product area exposed in the chamber (A_C) as: EF = ($CC^*V_C^*N_C$)/ A_C .

The product area exposed in the chamber (A_C) as: EF = ($A_C^*V_C^*N_C$)/ A_C .

The product area exposed in the chamber (A_C) as: EF = ($A_C^*V_C^*N_C$)/ A_C . quantified based on a toluene response factor.

^{*}The predicted building exposure concentration (BC) is calculated from the emission factor (EF), the building air change rate (N_B), the building room volume (V_B), and the product area exposed in the building room (A_B) as: BC = (EF*A_B)/(V_B*N_B). Prediction based on a standard classroom ceiling usage of 89.2 m² in a 231 m³ room with 0.82 ACH or on a standard office ceiling usage of 11.1 m² in a 30.6 m³ room with 0.68 ACH.

Released by UL Environment

Date Issued: August 2, 2018
Product ID #: 18538-040AA
Test Report #: 18538-04R1

©2018 UL LLC

Supersedes Test Report #: 18538-04

TABLE 5

VOC PREDICTED AIR CONCENTRATIONS AND REGULATORY INFORMATION AT 96 HOURS FOLLOWING 10 DAYS OF CONDITIONING

PREPARED FOR: GCP APPLIED TECHNOLOGIES PRODUCT 18538-040AA; Z-106/HY, Z-3306

CAS NUMBER	COMPOUND IDENTIFIED	CHAMBER	EMISSION	PREDICTED EXPOSURE CONCENTRATION** (µg/m³)		✓ INDICATES PRESENCE ON LIST		
	COMPOUND IDENTIFIED	CONC. (µg/m³)	FACTOR ^{††} (µg/m²•hr)			CA PROP	CA AIR	CREL
				Classroom	Office	65	TOXIC	
	none							

[†]Quantified using multipoint authentic standard curve. Other VOCs quantified relative to toluene.

CAL Prop. 65: California Health and Welfare Agency, Proposition 65 Chemicals

- 1 = known to cause cancer
- 2 = known to cause reproductive toxicity

CAL Toxic Air Contaminant:

- 1) Substances identified as Toxic Air Contaminants, known to be emitted in California, with a full set of health values reviewed by the Scientific Review Panel.
- IIA) Substances identified as Toxic Air Contaminants, known to be emitted in California, with one or more health values under development by the Office of Environmental Health Hazard Assessment for review by the Scientific Review Panel.
- IIB) Substances NOT identified as Toxic Air Contaminants, known to be emitted in California, with one or more health values under development by the Office of Environmental Health Hazard Assessment for review by the Scientific Review Panel.
- III) Substances known to be emitted in California, and are NOMINATED for development of health values or additional health values.
- IVA) Substance identified as Toxic Air Contaminants, known to be emitted in California, and are TO BE EVALUATED for entry into Category III.
- IVB) Substance NOT identified as Toxic Air Contaminants, known to be emitted in California, and are TO BE EVALUATED for entry into Category III.
- V) Substance identified as Toxic Air Contaminants, and NOT KNOWN TO BE EMITTED from stationary source facilities in California based on information from the AB 2588 Air Toxic "Hot Spots" Program and the California Toxic Release Inventory.
- VI) Substances identified as Toxic Air Contaminants, NOT KNOWN TO BE EMITTED from stationary source facilities in California, and are active ingredients in pesticides in California.

Chronic REL: California Office of Environmental Health Hazard Assessment (OEHHA), Chronic Reference Exposure Levels

√ = Found in Listing

[‡]Compound identified and quantified by DNPH derivitization and HPLC/UV analysis.

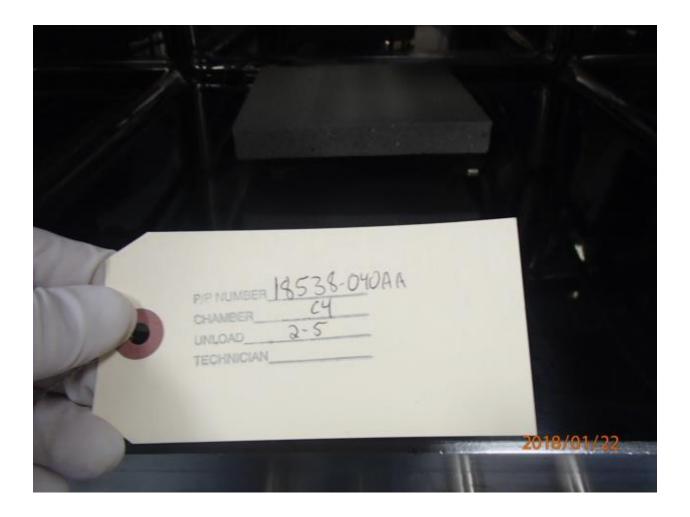
^{††}The emission factor (EF) is calculated from the chamber concentration (CC), the chamber air change rate (N_C), the chamber volume (V_C), and the product area exposed in the chamber (A_C) as: EF = (CC*V_C*N_C)/A_C.

^{**}The predicted building exposure concentration (BC) is calculated from the emission factor (EF), the building air change rate (N_B), the building room volume (V_B), and the product area exposed in the building room (A_B) as: BC = (EF*A_B)/(V_B*N_B). Prediction based on a standard classroom ceiling usage of 89.2 m² in a 231 m³ room with 0.82 ACH or on a standard office ceiling usage of 11.1 m² in a 30.6 m³ room with 0.68 ACH.

©2018 UL LLC

Supersedes Test Report #: 18538-04

REFERENCES


- 1. The State of California's Indoor Air Quality Program, "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources using Environmental Chambers" Version 1.2. https://archive.cdph.ca.gov/programs/IAQ/Documents/CDPH-IAQ StandardMethod V1 2 2017.pdf.
- 2. ASTM D 5116, "Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions from Indoor Materials/Products." ASTM, West Conshohocken, PA, 2010.
- 3. EPA TO-17, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Second Edition," United States Environmental Protection Agency, www.epa.gov/ttn/amtic/files/ambient/airtox/to-17r.pdf, 1999.
- 4. ASTM D 6196 "Practice for the Selection of Sorbents and Pumped Sampling/ Thermal Desorption Analysis Procedures for Volatile Organic Compounds in Air." ASTM, West Conshohocken, PA, 2009.
- 5. ASTM D 5197, "Test Method for Determination of Formaldehyde and Other Carbonyl Compounds in Air (Active Sampler Methodology)." ASTM, West Conshohocken, PA, 2009.
- ISO 16000-6, "Indoor air -- Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID," 2004. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=30147,
- 7. California Environmental Protection Agency; Chronic Reference Exposure Levels; The Office of Environmental Health Hazard Assessment (OEHHA); http://www.oehha.ca.gov/air/Allrels.html.
- 8. California Environmental Protection Agency. Safe Drinking Water & Toxic Enforcement Act of 1986 (Proposition 65): No Significant Risk Levels for Carcinogens; Acceptable Intake Levels for Reproductive Toxicants (Status Report). Sacramento: California Environmental Protection Agency; http://www.oehha.ca.gov/prop65/getNSRLs.html.
- 9. California Environmental Protection Agency. Air Resources Board. Toxic Air Contaminants (TAC) Identification List; http://www.arb.ca.gov/toxics/cattable.htm

©2018 UL LLC

Supersedes Test Report #: 18538-04

APPENDIX 1

PREPARED FOR: GCP APPLIED TECHNOLOGIES PRODUCT 18538-040AA; Z-106/HY, Z-3306

©2018 UL LLC Supersedes Test Report #: 18538-04

APPENDIX 2

CHAIN OF CUSTODY

888.4	a, GA 30	t Parkway, Suite 067-9399 USA (F:770.980.0072 conment	For UL GR	nain Of Custod EENGUARD Co Programs	ertification	(UL)
3	38	- OU O atory Use Or	AA nly	10021	1993	
Pro	ject #	grace 8	10	confirm with Labora	atory Contact prior to	CURMBJ017
	duct # der #	2-106	Task Line	submittin	UL Business Unit	
-	40. 11	10000				
				st Information		GREENGUARD GOL
	Annua	Certification T	est: Year	GREENGL		
	Quart	erly Test: Yea	r Quarter	GREENGL	JARD 🗆	GREENGUARD GOL
Г	☐ Profile	Study Test	☐ Out-of-Scope Test	Test Grou	р	
		/	I HCHO, and Total Aldehydes	Product Cate	gory CDPH	VI.1.
Ana	lysis -		☐ Full Speciation	Subcatego	nry	
	Tor Mot	Products Only:	Coverage Rate:	Der	nsity:	Specific Gravity:
	olication		Floor/Ceiling	☐Work Surface nd Company In		Other:
(Compar S	y Submitting ample	CP- Apple	d Teel	Contact Name Job Title Contact Phone Contact Email	John Dellan 17 4984935 John a dellancegep
-	OR OTHER DESIGNATION AS	uuress	Cambridge		7	ann a octor teger
	Collect		(ambrage col	lection Informa	ation Date Collected	ann a denot reger
	Collecto	or Name or Phone	Cambridge	lection Informa	ation	anii.a aeta negep
	Collecto	or Name	Col	lection Informa	*Date Collected Time Collected Collection Location	anna denon e ger
C	Collector Collector	or Name or Phone	Col	lection Informa	Time Collected Collection Location	// 12/1X
	Collector Collector Ca Shippe	or Name or Phone Signature	Col	lection Informa	*Date Collected Time Collected Collection Location	1/12/18
	Collector Ca Shippe	or Name or Phone Signature arrier er Name er Phone	Sh	Jection Information	Time Collected Collection Location Toate Shipped Time Shipped Air Bill #	1/12/18
	Collector Ca Shipper Shipper	or Name or Phone Signature arrier er Name er Phone Signature	Sh	lection Information (Mu	Time Collected Collection Location tition 'Date Shipped Time Shipped Air Bill # st be Completed	1/12/18
	Collector Ca Shipper Shipper	or Name or Phone Signature arrier ar Name er Phone Signature	Post Testing Ir	ipping Information (Mu	Time Collected Time Collected Collection Location ation *Date Shipped Time Shipped Air Bill # st be Completed policy return) Shipper Acct #	/
	Collector Ca Shipper Shipper Shipper	or Name or Phone Signature arrier or Name or Phone Signature Return Sample Shipper	Post Testing Ir	ipping Information (Mu	"Date Collected Time Collected Collection Location ation "Date Shipped Time Shipped Air Bill # Ste Completed mple return) Shipper Acct # Eviving Information Receive Time	// 12/18 7712 4627 a Wiscard sample(s) after
	Collector Ca Shipper Shipper Shipper Return	or Name or Phone Signature arrier ar Name er Phone Signature	Post Testing Ir	ipping Information (Mu wided below for sales only – Rece	Time Collected Time Collected Collection Location ation *Date Shipped Time Shipped Air Bill # st be Completed mple return) Shipper Acct # Eving Information Receive Time Sample Condition / Alotss	// 12/18 7712 4627 a Wiscard sample(s) after
	Collector Collector Collector Shipper Shipper Return Reco	or Name or Phone Signature arrier ar Name er Phone Signature Return Sample Shipper	Post Testing Ir	ipping Information (Mulwided below for sa	Time Collected Time Collected Collection Location Time Shipped Time Shipped Air Bill # sst be Completed mple return) Shipper Acct # siving Information Receive Time Sample Condition	// 12/18 7712 4627 a Wiscard sample(s) after

©2018 ÜL LLC

Supersedes Test Report #: 18538-04

APPENDIX 3

QUALITY CONTROL PROCEDURES FOR ENVIRONMENTAL CHAMBER EVALUATIONS

UL Environment's IAQ testing laboratories are ISO/IEC 17025 accredited with defined and executed internal and third party verification programs encompassing emission test methods and low level pollutant measurements. UL Environment's quality control/assurance plan is designed to ensure the integrity of the measured and reported data obtained during its product evaluation studies. This QC program encompasses all facets of the measurement program from sample receipt to final review and issuance of reports. As a firm with ISO/IEC 17025 accredited IAQ testing laboratories, UL Environment's product control, testing, data handling, and reporting protocols and procedures are standardized and controlled. UL Environment participates in proficiency and accreditation measurement programs for VOC and emission testing as required by the State of California, Germany Ministry of Health's Blue Angel Program, LGC Standards Air Proficiency Testing Scheme, and GREENGUARD Certification programs. Quality Assurance is maintained through UL Environment's computerized data management system. An electronic "paper trail" for each analysis is also maintained and utilized to track the status of each sample, and to store the results. A complete quality report can be provided upon request and all test data and analysis procedures are available on site for customer review.

Chamber Evaluations

One of the most critical parameters in UL Environment's product evaluations is the measurement of ultratrace levels of gaseous chemicals, typically in the ppb air concentration range. This necessitates a very rigidly maintained effort to control background contributions and contamination. These contributions must be significantly less than those levels being measured for statistically significant data to be obtained. UL Environment addresses this control in many directions including chamber construction materials, air purification and humidification, sampling materials and chemicals, sample introduction, and analysis.

Supply air purity is monitored on a weekly basis, using identical methodology to the chamber testing. The supply air is assured to contain less than 10 μ g/m³ TVOC, < 10 μ g/m³ total particles, < 2 μ g/m³ formaldehyde, and < 2 μ g/m³ for any individual VOC. Preventative maintenance ensures supply air purity, and corrective action is taken when any potential problems are noted in weekly samples. Supply air filter maintenance is critical for ensuring the purity of the chamber supply air. Chamber background samples are obtained prior to product exposure to ensure contaminant backgrounds meet the required specifications prior to product exposure. Results of this monitoring are maintained at UL Environment and available for on-site inspection.

All environmental chamber procedures are in accordance with ASTM D 5116 and meet the data quality objectives required.

Various measures are routinely implemented in a product's evaluation program. These include but are not limited to:

appropriate record keeping of sample identifications and tracking throughout the study;

©2018 ÜL LLC

Supersedes Test Report #: 18538-04

- calibration of all instrumentation and equipment used in the collection and analysis of samples;
- validation and tracking of all chamber parameters including air purification, environmental controls, air change rate, chamber mixing, air velocities, and sample recovery;
- analysis of spiked samples for accuracy determinations;
- duplicate analyses of 10% of all samples evaluated and analyzed;
- multi-point calibration and linear regression of all standardization;
- analysis of controls including chamber backgrounds, sampling media, and instrumental systems.

VOC and Aldehyde Measurements

Precision of TVOC and aldehyde analyses is assessed by the Relative Standard Deviation (%RSD) from duplicate samples, defined as the standard deviation of each data set divided by the mean multiplied by 100. All QC data measurements are calculated based on the 12 month period indicated below. The VOC accuracy is based on recovery of toluene mass spiked onto sorbent material. The aldehyde accuracy is based on LGC Standard formaldehyde proficiency test results, measured by the mean Relative Percent Difference (%RPD). Third party proficiency and round robin testing for low level VOCs for national and international programs are continuously conducted and reported in UL Environment's quarterly Quality Assurance Report, and are available to all customers.

12 Month Period	January 1, 2017 through December 31, 2018	
Procision Moon BSD 9/	TVOC	6.3
Precision Mean RSD %	Total Aldehydes (Including Formaldehyde)	3.9
A	VOC – Toluene Recovery	101
Accuracy %	Formaldehyde Mean RPD	2.4